\(\int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx\) [24]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 321 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\frac {h x}{c}+\frac {i x^2}{2 c}+\frac {\left (c f-b h+\frac {2 c^2 d+b^2 h-c (b f+2 a h)}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (c f-b h-\frac {2 c^2 d-b c f+b^2 h-2 a c h}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {\left (2 c^2 e-b c g+b^2 i-2 a c i\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c^2 \sqrt {b^2-4 a c}}+\frac {(c g-b i) \log \left (a+b x^2+c x^4\right )}{4 c^2} \]

[Out]

h*x/c+1/2*i*x^2/c+1/4*(-b*i+c*g)*ln(c*x^4+b*x^2+a)/c^2-1/2*(-2*a*c*i+b^2*i-b*c*g+2*c^2*e)*arctanh((2*c*x^2+b)/
(-4*a*c+b^2)^(1/2))/c^2/(-4*a*c+b^2)^(1/2)+1/2*arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(c*f-b*h
+(2*c^2*d+b^2*h-c*(2*a*h+b*f))/(-4*a*c+b^2)^(1/2))/c^(3/2)*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/2*arctan(x*2
^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(c*f-b*h+(2*a*c*h-b^2*h+b*c*f-2*c^2*d)/(-4*a*c+b^2)^(1/2))/c^(3/2
)*2^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1687, 1690, 1180, 211, 1677, 1671, 648, 632, 212, 642} \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right ) \left (\frac {-c (2 a h+b f)+b^2 h+2 c^2 d}{\sqrt {b^2-4 a c}}-b h+c f\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right ) \left (-\frac {-2 a c h+b^2 h-b c f+2 c^2 d}{\sqrt {b^2-4 a c}}-b h+c f\right )}{\sqrt {2} c^{3/2} \sqrt {\sqrt {b^2-4 a c}+b}}-\frac {\text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right ) \left (-2 a c i+b^2 i-b c g+2 c^2 e\right )}{2 c^2 \sqrt {b^2-4 a c}}+\frac {(c g-b i) \log \left (a+b x^2+c x^4\right )}{4 c^2}+\frac {h x}{c}+\frac {i x^2}{2 c} \]

[In]

Int[(d + e*x + f*x^2 + g*x^3 + h*x^4 + i*x^5)/(a + b*x^2 + c*x^4),x]

[Out]

(h*x)/c + (i*x^2)/(2*c) + ((c*f - b*h + (2*c^2*d + b^2*h - c*(b*f + 2*a*h))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]
*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((c*f - b*h - (2*c^2
*d - b*c*f + b^2*h - 2*a*c*h)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqr
t[2]*c^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - ((2*c^2*e - b*c*g + b^2*i - 2*a*c*i)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^
2 - 4*a*c]])/(2*c^2*Sqrt[b^2 - 4*a*c]) + ((c*g - b*i)*Log[a + b*x^2 + c*x^4])/(4*c^2)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1671

Int[(Pq_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x + c*x^2)^p, x
], x] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rule 1677

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)
*SubstFor[x^2, Pq, x]*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x^2] && Inte
gerQ[(m - 1)/2]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1690

Int[(Pq_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[Pq/(a + b*x^2 + c*x^4), x], x
] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && Expon[Pq, x^2] > 1

Rubi steps \begin{align*} \text {integral}& = \int \frac {d+f x^2+h x^4}{a+b x^2+c x^4} \, dx+\int \frac {x \left (e+g x^2+i x^4\right )}{a+b x^2+c x^4} \, dx \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {e+g x+i x^2}{a+b x+c x^2} \, dx,x,x^2\right )+\int \left (\frac {h}{c}+\frac {c d-a h+(c f-b h) x^2}{c \left (a+b x^2+c x^4\right )}\right ) \, dx \\ & = \frac {h x}{c}+\frac {1}{2} \text {Subst}\left (\int \left (\frac {i}{c}+\frac {c e-a i+(c g-b i) x}{c \left (a+b x+c x^2\right )}\right ) \, dx,x,x^2\right )+\frac {\int \frac {c d-a h+(c f-b h) x^2}{a+b x^2+c x^4} \, dx}{c} \\ & = \frac {h x}{c}+\frac {i x^2}{2 c}+\frac {\text {Subst}\left (\int \frac {c e-a i+(c g-b i) x}{a+b x+c x^2} \, dx,x,x^2\right )}{2 c}+\frac {\left (c f-b h-\frac {2 c^2 d-b c f+b^2 h-2 a c h}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 c}+\frac {\left (c f-b h+\frac {2 c^2 d+b^2 h-c (b f+2 a h)}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 c} \\ & = \frac {h x}{c}+\frac {i x^2}{2 c}+\frac {\left (c f-b h+\frac {2 c^2 d+b^2 h-c (b f+2 a h)}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (c f-b h-\frac {2 c^2 d-b c f+b^2 h-2 a c h}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {(c g-b i) \text {Subst}\left (\int \frac {b+2 c x}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c^2}+\frac {\left (2 c^2 e-b c g+b^2 i-2 a c i\right ) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c^2} \\ & = \frac {h x}{c}+\frac {i x^2}{2 c}+\frac {\left (c f-b h+\frac {2 c^2 d+b^2 h-c (b f+2 a h)}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (c f-b h-\frac {2 c^2 d-b c f+b^2 h-2 a c h}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {(c g-b i) \log \left (a+b x^2+c x^4\right )}{4 c^2}-\frac {\left (2 c^2 e-b c g+b^2 i-2 a c i\right ) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{2 c^2} \\ & = \frac {h x}{c}+\frac {i x^2}{2 c}+\frac {\left (c f-b h+\frac {2 c^2 d+b^2 h-c (b f+2 a h)}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (c f-b h-\frac {2 c^2 d-b c f+b^2 h-2 a c h}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {\left (2 c^2 e-b c g+b^2 i-2 a c i\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c^2 \sqrt {b^2-4 a c}}+\frac {(c g-b i) \log \left (a+b x^2+c x^4\right )}{4 c^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 441, normalized size of antiderivative = 1.37 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\frac {4 c h x+2 c i x^2+\frac {2 \sqrt {2} \sqrt {c} \left (2 c^2 d+b \left (b-\sqrt {b^2-4 a c}\right ) h+c \left (-b f+\sqrt {b^2-4 a c} f-2 a h\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {2 \sqrt {2} \sqrt {c} \left (2 c^2 d+b \left (b+\sqrt {b^2-4 a c}\right ) h-c \left (b f+\sqrt {b^2-4 a c} f+2 a h\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {\left (2 c^2 e+b \left (b-\sqrt {b^2-4 a c}\right ) i+c \left (-b g+\sqrt {b^2-4 a c} g-2 a i\right )\right ) \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\sqrt {b^2-4 a c}}-\frac {\left (2 c^2 e+b \left (b+\sqrt {b^2-4 a c}\right ) i-c \left (b g+\sqrt {b^2-4 a c} g+2 a i\right )\right ) \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\sqrt {b^2-4 a c}}}{4 c^2} \]

[In]

Integrate[(d + e*x + f*x^2 + g*x^3 + h*x^4 + i*x^5)/(a + b*x^2 + c*x^4),x]

[Out]

(4*c*h*x + 2*c*i*x^2 + (2*Sqrt[2]*Sqrt[c]*(2*c^2*d + b*(b - Sqrt[b^2 - 4*a*c])*h + c*(-(b*f) + Sqrt[b^2 - 4*a*
c]*f - 2*a*h))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 -
 4*a*c]]) - (2*Sqrt[2]*Sqrt[c]*(2*c^2*d + b*(b + Sqrt[b^2 - 4*a*c])*h - c*(b*f + Sqrt[b^2 - 4*a*c]*f + 2*a*h))
*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + ((
2*c^2*e + b*(b - Sqrt[b^2 - 4*a*c])*i + c*(-(b*g) + Sqrt[b^2 - 4*a*c]*g - 2*a*i))*Log[-b + Sqrt[b^2 - 4*a*c] -
 2*c*x^2])/Sqrt[b^2 - 4*a*c] - ((2*c^2*e + b*(b + Sqrt[b^2 - 4*a*c])*i - c*(b*g + Sqrt[b^2 - 4*a*c]*g + 2*a*i)
)*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/Sqrt[b^2 - 4*a*c])/(4*c^2)

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.10 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.31

method result size
risch \(\frac {h x}{c}+\frac {i \,x^{2}}{2 c}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\left (-b i +g c \right ) \textit {\_R}^{3}+\left (-b h +c f \right ) \textit {\_R}^{2}+\left (-a i +e c \right ) \textit {\_R} -a h +c d \right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}}{2 c}\) \(99\)
default \(\frac {h x +\frac {1}{2} i \,x^{2}}{c}+\frac {\sqrt {-4 a c +b^{2}}\, \left (\frac {\left (\sqrt {-4 a c +b^{2}}\, b i -\sqrt {-4 a c +b^{2}}\, c g -2 a c i +b^{2} i -g b c +2 e \,c^{2}\right ) \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )}{4 c}+\frac {\left (\sqrt {-4 a c +b^{2}}\, b h -\sqrt {-4 a c +b^{2}}\, f c -2 a c h +b^{2} h -f b c +2 c^{2} d \right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{c \left (4 a c -b^{2}\right )}+\frac {\sqrt {-4 a c +b^{2}}\, \left (-\frac {\left (-\sqrt {-4 a c +b^{2}}\, b i +\sqrt {-4 a c +b^{2}}\, c g -2 a c i +b^{2} i -g b c +2 e \,c^{2}\right ) \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )}{4 c}+\frac {\left (-\sqrt {-4 a c +b^{2}}\, b h +\sqrt {-4 a c +b^{2}}\, f c -2 a c h +b^{2} h -f b c +2 c^{2} d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{c \left (4 a c -b^{2}\right )}\) \(408\)

[In]

int((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

h*x/c+1/2*i*x^2/c+1/2/c*sum(((-b*i+c*g)*_R^3+(-b*h+c*f)*_R^2+(-a*i+c*e)*_R-a*h+c*d)/(2*_R^3*c+_R*b)*ln(x-_R),_
R=RootOf(_Z^4*c+_Z^2*b+a))

Fricas [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\text {Timed out} \]

[In]

integrate((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\text {Timed out} \]

[In]

integrate((i*x**5+h*x**4+g*x**3+f*x**2+e*x+d)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\int { \frac {i x^{5} + h x^{4} + g x^{3} + f x^{2} + e x + d}{c x^{4} + b x^{2} + a} \,d x } \]

[In]

integrate((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

1/2*(i*x^2 + 2*h*x)/c - integrate(-((c*g - b*i)*x^3 + (c*f - b*h)*x^2 + c*d - a*h + (c*e - a*i)*x)/(c*x^4 + b*
x^2 + a), x)/c

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5941 vs. \(2 (277) = 554\).

Time = 1.55 (sec) , antiderivative size = 5941, normalized size of antiderivative = 18.51 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

[In]

integrate((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

1/4*(c*g - b*i)*log(abs(c*x^4 + b*x^2 + a))/c^2 + 1/2*(c*i*x^2 + 2*c*h*x)/c^2 + 1/8*((2*b^4*c^3 - 16*a*b^2*c^4
 + 32*a^2*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*
sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^
2 - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*
c + sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^3 + 4*sqrt(
2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^4 - 2*(b^2 - 4*a*c)*b^2*c^3 + 8*(b^2 - 4*a*c)*a*c^4)*
c^2*f - (2*b^5*c^2 - 16*a*b^3*c^3 + 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b
^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*
c + sqrt(b^2 - 4*a*c)*c)*b^4*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sq
rt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(
b^2 - 4*a*c)*c)*b^3*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c
)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*c^3)*c^2*h + 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sq
rt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^4 - 2*b^4*c^4 + 16*s
qrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^5 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^5 + sqrt(2)*s
qrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^5 + 16*a*b^2*c^5 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^6 - 32*a
^2*c^6 + 2*(b^2 - 4*a*c)*b^2*c^4 - 8*(b^2 - 4*a*c)*a*c^5)*d*abs(c) - 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c
)*a*b^4*c^2 - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c
)*a*b^3*c^3 - 2*a*b^4*c^3 + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2
 - 4*a*c)*c)*a^2*b*c^4 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 + 16*a^2*b^2*c^4 - 4*sqrt(2)*sqrt(b
*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^5 - 32*a^3*c^5 + 2*(b^2 - 4*a*c)*a*b^2*c^3 - 8*(b^2 - 4*a*c)*a^2*c^4)*h*abs(c)
 + 2*(2*b^3*c^6 - 8*a*b*c^7 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 4*sqrt(2)*sq
rt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^5 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*
a*c)*c)*b^2*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^6 - 2*(b^2 - 4*a*c)*b*c^6)*d -
 (2*b^4*c^5 - 8*a*b^2*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^3 + 4*sqrt(2)*sqrt
(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*
a*c)*c)*b^3*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^5 - 2*(b^2 - 4*a*c)*b^2*c^5)
*f + (2*b^5*c^4 - 12*a*b^3*c^5 + 16*a^2*b*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5*
c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt
(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 -
4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + s
qrt(b^2 - 4*a*c)*c)*b^3*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^5 - 2*(b^2 - 4
*a*c)*b^3*c^4 + 4*(b^2 - 4*a*c)*a*b*c^5)*h)*arctan(2*sqrt(1/2)*x/sqrt((b*c^5 + sqrt(b^2*c^10 - 4*a*c^11))/c^6)
)/((a*b^4*c^3 - 8*a^2*b^2*c^4 - 2*a*b^3*c^4 + 16*a^3*c^5 + 8*a^2*b*c^5 + a*b^2*c^5 - 4*a^2*c^6)*c^2) - 1/8*((2
*b^4*c^3 - 16*a*b^2*c^4 + 32*a^2*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c + 8*sqr
t(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt
(b^2 - 4*a*c)*c)*b^3*c^2 - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^3 - 8*sqrt(2)*sq
rt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*
c)*c)*b^2*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*c^4 - 2*(b^2 - 4*a*c)*b^2*c^3 +
8*(b^2 - 4*a*c)*a*c^4)*c^2*f - (2*b^5*c^2 - 16*a*b^3*c^3 + 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c -
 sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sq
rt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a
*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 -
4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a
*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*c^3)*c^2*h - 2*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)
*b^4*c^3 - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3
*c^4 + 2*b^4*c^4 + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^5 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)
*c)*a*b*c^5 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c^5 - 16*a*b^2*c^5 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 -
 4*a*c)*c)*a*c^6 + 32*a^2*c^6 - 2*(b^2 - 4*a*c)*b^2*c^4 + 8*(b^2 - 4*a*c)*a*c^5)*d*abs(c) + 2*(sqrt(2)*sqrt(b*
c - sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 2*sqrt(2)*sqrt(b*
c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*a*b^4*c^3 + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 8*sqrt
(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - 16*a^2*b^2
*c^4 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^5 + 32*a^3*c^5 - 2*(b^2 - 4*a*c)*a*b^2*c^3 + 8*(b^2 - 4
*a*c)*a^2*c^4)*h*abs(c) + 2*(2*b^3*c^6 - 8*a*b*c^7 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)
*b^3*c^4 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^5 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b*c^6 - 2*(
b^2 - 4*a*c)*b*c^6)*d - (2*b^4*c^5 - 8*a*b^2*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b
^4*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c^5 - 2
*(b^2 - 4*a*c)*b^2*c^5)*f + (2*b^5*c^4 - 12*a*b^3*c^5 + 16*a^2*b*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sq
rt(b^2 - 4*a*c)*c)*b^5*c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*sqrt(2)
*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 -
 4*a*c)*c)*a^2*b*c^4 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - sqrt(2)*sqrt(b^
2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*
c)*a*b*c^5 - 2*(b^2 - 4*a*c)*b^3*c^4 + 4*(b^2 - 4*a*c)*a*b*c^5)*h)*arctan(2*sqrt(1/2)*x/sqrt((b*c^5 - sqrt(b^2
*c^10 - 4*a*c^11))/c^6))/((a*b^4*c^3 - 8*a^2*b^2*c^4 - 2*a*b^3*c^4 + 16*a^3*c^5 + 8*a^2*b*c^5 + a*b^2*c^5 - 4*
a^2*c^6)*c^2) + 1/16*(2*(b^5*c^2 - 8*a*b^3*c^3 - 2*b^4*c^3 + 16*a^2*b*c^4 + 8*a*b^2*c^4 + b^3*c^4 - 4*a*b*c^5
+ (b^4*c^2 - 8*a*b^2*c^3 - 2*b^3*c^3 + 16*a^2*c^4 + 8*a*b*c^4 + b^2*c^4 - 4*a*c^5)*sqrt(b^2 - 4*a*c))*e*abs(c)
 - (b^6*c - 8*a*b^4*c^2 - 2*b^5*c^2 + 16*a^2*b^2*c^3 + 8*a*b^3*c^3 + b^4*c^3 - 4*a*b^2*c^4 + (b^5*c - 8*a*b^3*
c^2 - 2*b^4*c^2 + 16*a^2*b*c^3 + 8*a*b^2*c^3 + b^3*c^3 - 4*a*b*c^4)*sqrt(b^2 - 4*a*c))*g*abs(c) + (b^7 - 10*a*
b^5*c - 2*b^6*c + 32*a^2*b^3*c^2 + 12*a*b^4*c^2 + b^5*c^2 - 32*a^3*b*c^3 - 16*a^2*b^2*c^3 - 6*a*b^3*c^3 + 8*a^
2*b*c^4 + (b^6 - 10*a*b^4*c - 2*b^5*c + 32*a^2*b^2*c^2 + 12*a*b^3*c^2 + b^4*c^2 - 32*a^3*c^3 - 16*a^2*b*c^3 -
6*a*b^2*c^3 + 8*a^2*c^4)*sqrt(b^2 - 4*a*c))*i*abs(c) + 2*(b^5*c^3 - 8*a*b^3*c^4 - 2*b^4*c^4 + 16*a^2*b*c^5 + 8
*a*b^2*c^5 + b^3*c^5 - 4*a*b*c^6 + (b^4*c^3 - 4*a*b^2*c^4 - 2*b^3*c^4 + b^2*c^5)*sqrt(b^2 - 4*a*c))*e - (b^6*c
^2 - 8*a*b^4*c^3 - 2*b^5*c^3 + 16*a^2*b^2*c^4 + 8*a*b^3*c^4 + b^4*c^4 - 4*a*b^2*c^5 - (b^5*c^2 - 4*a*b^3*c^3 -
 2*b^4*c^3 + b^3*c^4)*sqrt(b^2 - 4*a*c))*g + (b^7*c - 10*a*b^5*c^2 - 2*b^6*c^2 + 32*a^2*b^3*c^3 + 12*a*b^4*c^3
 + b^5*c^3 - 32*a^3*b*c^4 - 16*a^2*b^2*c^4 - 6*a*b^3*c^4 + 8*a^2*b*c^5 + (b^6*c - 6*a*b^4*c^2 - 2*b^5*c^2 + 8*
a^2*b^2*c^3 + 4*a*b^3*c^3 + b^4*c^3 - 2*a*b^2*c^4)*sqrt(b^2 - 4*a*c))*i)*log(x^2 + 1/2*(b*c^5 + sqrt(b^2*c^10
- 4*a*c^11))/c^6)/((a*b^4*c - 8*a^2*b^2*c^2 - 2*a*b^3*c^2 + 16*a^3*c^3 + 8*a^2*b*c^3 + a*b^2*c^3 - 4*a^2*c^4)*
c^2*abs(c)) + 1/16*(2*(b^5*c^2 - 8*a*b^3*c^3 - 2*b^4*c^3 + 16*a^2*b*c^4 + 8*a*b^2*c^4 + b^3*c^4 - 4*a*b*c^5 +
(b^4*c^2 - 8*a*b^2*c^3 - 2*b^3*c^3 + 16*a^2*c^4 + 8*a*b*c^4 + b^2*c^4 - 4*a*c^5)*sqrt(b^2 - 4*a*c))*e*abs(c) -
 (b^6*c - 8*a*b^4*c^2 - 2*b^5*c^2 + 16*a^2*b^2*c^3 + 8*a*b^3*c^3 + b^4*c^3 - 4*a*b^2*c^4 - (b^5*c - 8*a*b^3*c^
2 - 2*b^4*c^2 + 16*a^2*b*c^3 + 8*a*b^2*c^3 + b^3*c^3 - 4*a*b*c^4)*sqrt(b^2 - 4*a*c))*g*abs(c) + (b^7 - 10*a*b^
5*c - 2*b^6*c + 32*a^2*b^3*c^2 + 12*a*b^4*c^2 + b^5*c^2 - 32*a^3*b*c^3 - 16*a^2*b^2*c^3 - 6*a*b^3*c^3 + 8*a^2*
b*c^4 - (b^6 - 10*a*b^4*c - 2*b^5*c + 32*a^2*b^2*c^2 + 12*a*b^3*c^2 + b^4*c^2 - 32*a^3*c^3 - 16*a^2*b*c^3 - 6*
a*b^2*c^3 + 8*a^2*c^4)*sqrt(b^2 - 4*a*c))*i*abs(c) - 2*(b^5*c^3 - 8*a*b^3*c^4 - 2*b^4*c^4 + 16*a^2*b*c^5 + 8*a
*b^2*c^5 + b^3*c^5 - 4*a*b*c^6 + (b^4*c^3 - 4*a*b^2*c^4 - 2*b^3*c^4 + b^2*c^5)*sqrt(b^2 - 4*a*c))*e + (b^6*c^2
 - 8*a*b^4*c^3 - 2*b^5*c^3 + 16*a^2*b^2*c^4 + 8*a*b^3*c^4 + b^4*c^4 - 4*a*b^2*c^5 - (b^5*c^2 - 4*a*b^3*c^3 - 2
*b^4*c^3 + b^3*c^4)*sqrt(b^2 - 4*a*c))*g - (b^7*c - 10*a*b^5*c^2 - 2*b^6*c^2 + 32*a^2*b^3*c^3 + 12*a*b^4*c^3 +
 b^5*c^3 - 32*a^3*b*c^4 - 16*a^2*b^2*c^4 - 6*a*b^3*c^4 + 8*a^2*b*c^5 - (b^6*c - 6*a*b^4*c^2 - 2*b^5*c^2 + 8*a^
2*b^2*c^3 + 4*a*b^3*c^3 + b^4*c^3 - 2*a*b^2*c^4)*sqrt(b^2 - 4*a*c))*i)*log(x^2 + 1/2*(b*c^5 - sqrt(b^2*c^10 -
4*a*c^11))/c^6)/((a*b^4*c - 8*a^2*b^2*c^2 - 2*a*b^3*c^2 + 16*a^3*c^3 + 8*a^2*b*c^3 + a*b^2*c^3 - 4*a^2*c^4)*c^
2*abs(c))

Mupad [B] (verification not implemented)

Time = 8.74 (sec) , antiderivative size = 11383, normalized size of antiderivative = 35.46 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

[In]

int((d + e*x + f*x^2 + g*x^3 + h*x^4 + i*x^5)/(a + b*x^2 + c*x^4),x)

[Out]

symsum(log((x*(c^4*e^3 - a^3*c*i^3 + c^4*d^2*g + b^4*e*i^2 + a^2*b^2*i^3 + b^2*c^2*e*g^2 + 3*a^2*c^2*e*i^2 + a
^2*c^2*g*h^2 + 2*b^2*c^2*e^2*i - a^2*c^2*g^2*i - 2*c^4*d*e*f - a*b*c^2*g^3 + a*c^3*e*g^2 + b*c^3*e*f^2 - a*c^3
*f^2*g - 2*b*c^3*e^2*g - 3*a*c^3*e^2*i - b*c^3*d^2*i + b^3*c*e*h^2 - a*b^3*g*i^2 - 2*a*b*c^2*e*h^2 - 3*a*b^2*c
*e*i^2 - a*b^2*c*g*h^2 + 2*a*b^2*c*g^2*i + a^2*b*c*h^2*i - 2*b^2*c^2*e*f*h - 2*a^2*c^2*f*h*i + 2*b*c^3*d*e*h +
 2*a*c^3*d*f*i - 2*a*c^3*d*g*h + 2*a*c^3*e*f*h - 2*b^3*c*e*g*i + 2*a*b*c^2*e*g*i + 2*a*b*c^2*f*g*h))/c^2 - (a*
c^3*f^3 - c^4*d*e^2 + c^4*d^2*f - b^4*d*i^2 - b^2*c^2*d*g^2 - a^2*c^2*d*i^2 + a^2*c^2*f*h^2 - a^2*c^2*g^2*h -
a^2*b^2*h*i^2 - a^2*b*c*h^3 + a*c^3*d*g^2 - b*c^3*d*f^2 + a*c^3*e^2*h - b*c^3*d^2*h - b^3*c*d*h^2 + a*b^3*f*i^
2 + a^3*c*h*i^2 + 2*a*b*c^2*d*h^2 + a*b*c^2*f*g^2 + 3*a*b^2*c*d*i^2 - 2*a*b*c^2*f^2*h + a*b^2*c*f*h^2 - 2*a^2*
b*c*f*i^2 - 2*b^2*c^2*d*e*i + 2*b^2*c^2*d*f*h - 2*a^2*c^2*e*h*i + 2*a^2*c^2*f*g*i + 2*b*c^3*d*e*g + 2*a*c^3*d*
e*i - 2*a*c^3*d*f*h - 2*a*c^3*e*f*g + 2*b^3*c*d*g*i - 4*a*b*c^2*d*g*i + 2*a*b*c^2*e*f*i - 2*a*b^2*c*f*g*i + 2*
a^2*b*c*g*h*i)/c^2 - root(128*a^2*b^2*c^5*z^4 - 16*a*b^4*c^4*z^4 - 256*a^3*c^6*z^4 + 128*a^2*b^3*c^3*i*z^3 - 1
28*a^2*b^2*c^4*g*z^3 - 256*a^3*b*c^4*i*z^3 - 16*a*b^5*c^2*i*z^3 + 16*a*b^4*c^3*g*z^3 + 256*a^3*c^5*g*z^3 + 160
*a^3*b*c^3*g*i*z^2 + 8*a*b^4*c^2*f*h*z^2 + 8*a*b^4*c^2*e*i*z^2 + 32*a^2*b*c^4*e*g*z^2 + 32*a^2*b*c^4*d*h*z^2 -
 8*a*b^3*c^3*e*g*z^2 - 8*a*b^3*c^3*d*h*z^2 + 16*a*b^2*c^4*d*f*z^2 + 8*a*b^5*c*g*i*z^2 - 72*a^2*b^3*c^2*g*i*z^2
 - 48*a^2*b^2*c^3*f*h*z^2 - 48*a^2*b^2*c^3*e*i*z^2 + 32*a^2*b^4*c*i^2*z^2 - 48*a^3*b*c^3*h^2*z^2 - 4*a*b^4*c^2
*g^2*z^2 + 16*a^2*b*c^4*f^2*z^2 - 4*a*b^3*c^3*f^2*z^2 + 8*a*b^2*c^4*e^2*z^2 + 64*a^3*c^4*f*h*z^2 + 64*a^3*c^4*
e*i*z^2 - 64*a^2*c^5*d*f*z^2 - 4*a*b^5*c*h^2*z^2 + 16*a*b*c^5*d^2*z^2 - 56*a^3*b^2*c^2*i^2*z^2 + 28*a^2*b^3*c^
2*h^2*z^2 + 40*a^2*b^2*c^3*g^2*z^2 - 32*a^4*c^3*i^2*z^2 - 96*a^3*c^4*g^2*z^2 - 32*a^2*c^5*e^2*z^2 - 4*b^3*c^4*
d^2*z^2 - 4*a*b^6*i^2*z^2 + 32*a^2*b*c^3*e*f*h*z - 32*a^2*b*c^3*d*f*i*z - 8*a*b^3*c^2*e*f*h*z + 8*a*b^3*c^2*d*
f*i*z - 8*a*b^2*c^3*d*f*g*z + 8*a*b^2*c^3*d*e*h*z - 8*a*b^4*c*e*g*i*z + 40*a^2*b^2*c^2*e*g*i*z + 8*a^2*b^2*c^2
*f*g*h*z - 8*a^2*b^2*c^2*d*h*i*z + 4*a^3*b^2*c*h^2*i*z - 32*a^3*b*c^2*g^2*i*z + 12*a^3*b^2*c*g*i^2*z + 8*a^2*b
^3*c*g^2*i*z + 16*a^3*b*c^2*g*h^2*z - 4*a^2*b^3*c*g*h^2*z + 32*a^3*b*c^2*e*i^2*z - 24*a^2*b^3*c*e*i^2*z - 16*a
^2*b*c^3*e^2*i*z + 4*a*b^3*c^2*e^2*i*z + 20*a*b^2*c^3*d^2*i*z - 16*a^2*b*c^3*e*g^2*z + 4*a*b^3*c^2*e*g^2*z - 4
*a*b^2*c^3*e^2*g*z + 4*a*b^2*c^3*e*f^2*z - 32*a^3*c^3*f*g*h*z - 32*a^3*c^3*e*g*i*z + 32*a^3*c^3*d*h*i*z + 32*a
^2*c^4*d*f*g*z - 32*a^2*c^4*d*e*h*z + 4*a*b^4*c*e*h^2*z - 16*a*b*c^4*d^2*g*z - 4*a^2*b^2*c^2*f^2*i*z - 20*a^2*
b^2*c^2*e*h^2*z - 4*a^2*b^2*c^2*g^3*z - 16*a^4*c^2*h^2*i*z + 16*a^4*c^2*g*i^2*z + 16*a^3*c^3*f^2*i*z - 4*a^2*b
^4*g*i^2*z - 4*b^4*c^2*d^2*i*z + 16*a^3*c^3*e*h^2*z - 16*a^2*c^4*d^2*i*z + 16*a^2*c^4*e^2*g*z + 4*b^3*c^3*d^2*
g*z - 16*a^2*c^4*e*f^2*z - 4*b^2*c^4*d^2*e*z + 4*a*b^5*e*i^2*z - 16*a^4*b*c*i^3*z + 16*a*c^5*d^2*e*z + 4*a^3*b
^3*i^3*z + 16*a^3*c^3*g^3*z + 4*a^2*b^2*c*d*g*h*i + 12*a^2*b*c^2*d*f*g*i - 4*a^2*b*c^2*e*f*g*h - 4*a^2*b*c^2*d
*e*h*i + 4*a*b^2*c^2*d*e*f*i - 4*a^3*b*c*f*g*h*i - 4*a*b^3*c*d*f*g*i - 4*a*b*c^3*d*e*f*g + 2*a^2*b^2*c*f^2*g*i
 - 4*a^2*b^2*c*e*g^2*i - 2*a^2*b*c^2*e^2*g*i - 8*a*b^2*c^2*d^2*g*i + 2*a^2*b^2*c*e*g*h^2 - 2*a^2*b*c^2*e*f^2*i
 - 8*a^2*b^2*c*d*f*i^2 - 2*a^2*b*c^2*d*g^2*h + 2*a*b^2*c^2*e^2*f*h - 4*a*b^2*c^2*d*f^2*h - 2*a^2*b*c^2*d*f*h^2
 + 2*a*b^2*c^2*d*f*g^2 + 8*a^3*c^2*e*f*h*i - 8*a^3*c^2*d*g*h*i + 8*a^2*c^3*d*e*g*h - 8*a^2*c^3*d*e*f*i - 2*a^3
*b*c*e*h^2*i + 6*a^3*b*c*d*h*i^2 - 2*a^3*b*c*e*g*i^2 + 2*a*b^3*c*e^2*g*i + 6*a*b*c^3*d^2*e*i + 2*a*b^3*c*d*f*h
^2 - 2*a*b*c^3*d^2*f*h - 2*a*b*c^3*d*e^2*h + 4*a^2*b^2*c*e^2*i^2 - 5*a^2*b*c^2*d^2*i^2 + 3*a^2*b*c^2*e^2*h^2 +
 4*a*b^2*c^2*d^2*h^2 - 4*a^3*c^2*f^2*g*i + 2*a^3*b^2*f*h*i^2 + 4*a^3*c^2*f*g^2*h + 4*a^3*c^2*e*g^2*i - 4*a^3*c
^2*e*g*h^2 + 4*a^2*c^3*d^2*g*i + 2*a^2*b^3*e*g*i^2 - 2*a^2*b^3*d*h*i^2 + 4*a^3*c^2*d*f*i^2 - 4*a^2*c^3*e^2*f*h
 + 2*b^3*c^2*d^2*f*h - 2*b^3*c^2*d^2*e*i + 4*a^2*c^3*e*f^2*g + 4*a^2*c^3*d*f^2*h - 4*a^2*c^3*d*f*g^2 + 3*a^3*b
*c*f^2*i^2 + 2*b^2*c^3*d^2*e*g + 2*a^2*b*c^2*f^3*h - 2*a*b^2*c^2*e^3*i + 5*a*b^3*c*d^2*i^2 - 2*a^2*b^2*c*d*h^3
 + 2*a^2*b*c^2*e*g^3 + 3*a*b*c^3*d^2*g^2 + 4*a^4*c*g*h^2*i - 4*a^4*c*f*h*i^2 + 2*b^4*c*d^2*g*i + 2*a^3*b*c*g^3
*i + 2*a*b^4*d*f*i^2 - 4*a*c^4*d^2*e*g + 2*a^3*b*c*f*h^3 + 4*a*c^4*d*e^2*f + 2*a*b*c^3*e^3*g + 2*a*b*c^3*d*f^3
 - a^2*b^2*c*f^2*h^2 - a^2*b*c^2*f^2*g^2 - a*b^2*c^2*e^2*g^2 + 2*a^4*b*g*i^3 + 4*a^4*c*e*i^3 + 4*a*c^4*d^3*h +
 2*b*c^4*d^3*f - a^3*b*c*g^2*h^2 - a*b^3*c*e^2*h^2 - 6*a^3*c^2*e^2*i^2 - 2*a^3*c^2*f^2*h^2 - a*b*c^3*e^2*f^2 -
 6*a^2*c^3*d^2*h^2 - 2*a^2*c^3*e^2*g^2 - 2*a^4*c*g^2*i^2 + 4*a^2*c^3*e^3*i - 2*b^2*c^3*d^3*h - 2*a^3*b^2*e*i^3
 + 4*a^3*c^2*d*h^3 - 2*a*c^4*d^2*f^2 - a^3*b^2*g^2*i^2 - a^2*b^3*f^2*i^2 - b^3*c^2*d^2*g^2 - b^2*c^3*d^2*f^2 -
 a^4*b*h^2*i^2 - b^4*c*d^2*h^2 - a*b^4*e^2*i^2 - b*c^4*d^2*e^2 - b^5*d^2*i^2 - a^3*c^2*g^4 - a^2*c^3*f^4 - a^4
*c*h^4 - a*c^4*e^4 - a^5*i^4 - c^5*d^4, z, l)*(root(128*a^2*b^2*c^5*z^4 - 16*a*b^4*c^4*z^4 - 256*a^3*c^6*z^4 +
 128*a^2*b^3*c^3*i*z^3 - 128*a^2*b^2*c^4*g*z^3 - 256*a^3*b*c^4*i*z^3 - 16*a*b^5*c^2*i*z^3 + 16*a*b^4*c^3*g*z^3
 + 256*a^3*c^5*g*z^3 + 160*a^3*b*c^3*g*i*z^2 + 8*a*b^4*c^2*f*h*z^2 + 8*a*b^4*c^2*e*i*z^2 + 32*a^2*b*c^4*e*g*z^
2 + 32*a^2*b*c^4*d*h*z^2 - 8*a*b^3*c^3*e*g*z^2 - 8*a*b^3*c^3*d*h*z^2 + 16*a*b^2*c^4*d*f*z^2 + 8*a*b^5*c*g*i*z^
2 - 72*a^2*b^3*c^2*g*i*z^2 - 48*a^2*b^2*c^3*f*h*z^2 - 48*a^2*b^2*c^3*e*i*z^2 + 32*a^2*b^4*c*i^2*z^2 - 48*a^3*b
*c^3*h^2*z^2 - 4*a*b^4*c^2*g^2*z^2 + 16*a^2*b*c^4*f^2*z^2 - 4*a*b^3*c^3*f^2*z^2 + 8*a*b^2*c^4*e^2*z^2 + 64*a^3
*c^4*f*h*z^2 + 64*a^3*c^4*e*i*z^2 - 64*a^2*c^5*d*f*z^2 - 4*a*b^5*c*h^2*z^2 + 16*a*b*c^5*d^2*z^2 - 56*a^3*b^2*c
^2*i^2*z^2 + 28*a^2*b^3*c^2*h^2*z^2 + 40*a^2*b^2*c^3*g^2*z^2 - 32*a^4*c^3*i^2*z^2 - 96*a^3*c^4*g^2*z^2 - 32*a^
2*c^5*e^2*z^2 - 4*b^3*c^4*d^2*z^2 - 4*a*b^6*i^2*z^2 + 32*a^2*b*c^3*e*f*h*z - 32*a^2*b*c^3*d*f*i*z - 8*a*b^3*c^
2*e*f*h*z + 8*a*b^3*c^2*d*f*i*z - 8*a*b^2*c^3*d*f*g*z + 8*a*b^2*c^3*d*e*h*z - 8*a*b^4*c*e*g*i*z + 40*a^2*b^2*c
^2*e*g*i*z + 8*a^2*b^2*c^2*f*g*h*z - 8*a^2*b^2*c^2*d*h*i*z + 4*a^3*b^2*c*h^2*i*z - 32*a^3*b*c^2*g^2*i*z + 12*a
^3*b^2*c*g*i^2*z + 8*a^2*b^3*c*g^2*i*z + 16*a^3*b*c^2*g*h^2*z - 4*a^2*b^3*c*g*h^2*z + 32*a^3*b*c^2*e*i^2*z - 2
4*a^2*b^3*c*e*i^2*z - 16*a^2*b*c^3*e^2*i*z + 4*a*b^3*c^2*e^2*i*z + 20*a*b^2*c^3*d^2*i*z - 16*a^2*b*c^3*e*g^2*z
 + 4*a*b^3*c^2*e*g^2*z - 4*a*b^2*c^3*e^2*g*z + 4*a*b^2*c^3*e*f^2*z - 32*a^3*c^3*f*g*h*z - 32*a^3*c^3*e*g*i*z +
 32*a^3*c^3*d*h*i*z + 32*a^2*c^4*d*f*g*z - 32*a^2*c^4*d*e*h*z + 4*a*b^4*c*e*h^2*z - 16*a*b*c^4*d^2*g*z - 4*a^2
*b^2*c^2*f^2*i*z - 20*a^2*b^2*c^2*e*h^2*z - 4*a^2*b^2*c^2*g^3*z - 16*a^4*c^2*h^2*i*z + 16*a^4*c^2*g*i^2*z + 16
*a^3*c^3*f^2*i*z - 4*a^2*b^4*g*i^2*z - 4*b^4*c^2*d^2*i*z + 16*a^3*c^3*e*h^2*z - 16*a^2*c^4*d^2*i*z + 16*a^2*c^
4*e^2*g*z + 4*b^3*c^3*d^2*g*z - 16*a^2*c^4*e*f^2*z - 4*b^2*c^4*d^2*e*z + 4*a*b^5*e*i^2*z - 16*a^4*b*c*i^3*z +
16*a*c^5*d^2*e*z + 4*a^3*b^3*i^3*z + 16*a^3*c^3*g^3*z + 4*a^2*b^2*c*d*g*h*i + 12*a^2*b*c^2*d*f*g*i - 4*a^2*b*c
^2*e*f*g*h - 4*a^2*b*c^2*d*e*h*i + 4*a*b^2*c^2*d*e*f*i - 4*a^3*b*c*f*g*h*i - 4*a*b^3*c*d*f*g*i - 4*a*b*c^3*d*e
*f*g + 2*a^2*b^2*c*f^2*g*i - 4*a^2*b^2*c*e*g^2*i - 2*a^2*b*c^2*e^2*g*i - 8*a*b^2*c^2*d^2*g*i + 2*a^2*b^2*c*e*g
*h^2 - 2*a^2*b*c^2*e*f^2*i - 8*a^2*b^2*c*d*f*i^2 - 2*a^2*b*c^2*d*g^2*h + 2*a*b^2*c^2*e^2*f*h - 4*a*b^2*c^2*d*f
^2*h - 2*a^2*b*c^2*d*f*h^2 + 2*a*b^2*c^2*d*f*g^2 + 8*a^3*c^2*e*f*h*i - 8*a^3*c^2*d*g*h*i + 8*a^2*c^3*d*e*g*h -
 8*a^2*c^3*d*e*f*i - 2*a^3*b*c*e*h^2*i + 6*a^3*b*c*d*h*i^2 - 2*a^3*b*c*e*g*i^2 + 2*a*b^3*c*e^2*g*i + 6*a*b*c^3
*d^2*e*i + 2*a*b^3*c*d*f*h^2 - 2*a*b*c^3*d^2*f*h - 2*a*b*c^3*d*e^2*h + 4*a^2*b^2*c*e^2*i^2 - 5*a^2*b*c^2*d^2*i
^2 + 3*a^2*b*c^2*e^2*h^2 + 4*a*b^2*c^2*d^2*h^2 - 4*a^3*c^2*f^2*g*i + 2*a^3*b^2*f*h*i^2 + 4*a^3*c^2*f*g^2*h + 4
*a^3*c^2*e*g^2*i - 4*a^3*c^2*e*g*h^2 + 4*a^2*c^3*d^2*g*i + 2*a^2*b^3*e*g*i^2 - 2*a^2*b^3*d*h*i^2 + 4*a^3*c^2*d
*f*i^2 - 4*a^2*c^3*e^2*f*h + 2*b^3*c^2*d^2*f*h - 2*b^3*c^2*d^2*e*i + 4*a^2*c^3*e*f^2*g + 4*a^2*c^3*d*f^2*h - 4
*a^2*c^3*d*f*g^2 + 3*a^3*b*c*f^2*i^2 + 2*b^2*c^3*d^2*e*g + 2*a^2*b*c^2*f^3*h - 2*a*b^2*c^2*e^3*i + 5*a*b^3*c*d
^2*i^2 - 2*a^2*b^2*c*d*h^3 + 2*a^2*b*c^2*e*g^3 + 3*a*b*c^3*d^2*g^2 + 4*a^4*c*g*h^2*i - 4*a^4*c*f*h*i^2 + 2*b^4
*c*d^2*g*i + 2*a^3*b*c*g^3*i + 2*a*b^4*d*f*i^2 - 4*a*c^4*d^2*e*g + 2*a^3*b*c*f*h^3 + 4*a*c^4*d*e^2*f + 2*a*b*c
^3*e^3*g + 2*a*b*c^3*d*f^3 - a^2*b^2*c*f^2*h^2 - a^2*b*c^2*f^2*g^2 - a*b^2*c^2*e^2*g^2 + 2*a^4*b*g*i^3 + 4*a^4
*c*e*i^3 + 4*a*c^4*d^3*h + 2*b*c^4*d^3*f - a^3*b*c*g^2*h^2 - a*b^3*c*e^2*h^2 - 6*a^3*c^2*e^2*i^2 - 2*a^3*c^2*f
^2*h^2 - a*b*c^3*e^2*f^2 - 6*a^2*c^3*d^2*h^2 - 2*a^2*c^3*e^2*g^2 - 2*a^4*c*g^2*i^2 + 4*a^2*c^3*e^3*i - 2*b^2*c
^3*d^3*h - 2*a^3*b^2*e*i^3 + 4*a^3*c^2*d*h^3 - 2*a*c^4*d^2*f^2 - a^3*b^2*g^2*i^2 - a^2*b^3*f^2*i^2 - b^3*c^2*d
^2*g^2 - b^2*c^3*d^2*f^2 - a^4*b*h^2*i^2 - b^4*c*d^2*h^2 - a*b^4*e^2*i^2 - b*c^4*d^2*e^2 - b^5*d^2*i^2 - a^3*c
^2*g^4 - a^2*c^3*f^4 - a^4*c*h^4 - a*c^4*e^4 - a^5*i^4 - c^5*d^4, z, l)*((x*(4*b^2*c^4*e - 8*b^3*c^3*g + 16*a^
2*c^4*i + 8*b^4*c^2*i - 16*a*c^5*e + 32*a*b*c^4*g - 36*a*b^2*c^3*i))/c^2 - (4*b^2*c^4*d + 16*a^2*c^4*h - 16*a*
c^5*d - 4*a*b^2*c^3*h)/c^2 + (root(128*a^2*b^2*c^5*z^4 - 16*a*b^4*c^4*z^4 - 256*a^3*c^6*z^4 + 128*a^2*b^3*c^3*
i*z^3 - 128*a^2*b^2*c^4*g*z^3 - 256*a^3*b*c^4*i*z^3 - 16*a*b^5*c^2*i*z^3 + 16*a*b^4*c^3*g*z^3 + 256*a^3*c^5*g*
z^3 + 160*a^3*b*c^3*g*i*z^2 + 8*a*b^4*c^2*f*h*z^2 + 8*a*b^4*c^2*e*i*z^2 + 32*a^2*b*c^4*e*g*z^2 + 32*a^2*b*c^4*
d*h*z^2 - 8*a*b^3*c^3*e*g*z^2 - 8*a*b^3*c^3*d*h*z^2 + 16*a*b^2*c^4*d*f*z^2 + 8*a*b^5*c*g*i*z^2 - 72*a^2*b^3*c^
2*g*i*z^2 - 48*a^2*b^2*c^3*f*h*z^2 - 48*a^2*b^2*c^3*e*i*z^2 + 32*a^2*b^4*c*i^2*z^2 - 48*a^3*b*c^3*h^2*z^2 - 4*
a*b^4*c^2*g^2*z^2 + 16*a^2*b*c^4*f^2*z^2 - 4*a*b^3*c^3*f^2*z^2 + 8*a*b^2*c^4*e^2*z^2 + 64*a^3*c^4*f*h*z^2 + 64
*a^3*c^4*e*i*z^2 - 64*a^2*c^5*d*f*z^2 - 4*a*b^5*c*h^2*z^2 + 16*a*b*c^5*d^2*z^2 - 56*a^3*b^2*c^2*i^2*z^2 + 28*a
^2*b^3*c^2*h^2*z^2 + 40*a^2*b^2*c^3*g^2*z^2 - 32*a^4*c^3*i^2*z^2 - 96*a^3*c^4*g^2*z^2 - 32*a^2*c^5*e^2*z^2 - 4
*b^3*c^4*d^2*z^2 - 4*a*b^6*i^2*z^2 + 32*a^2*b*c^3*e*f*h*z - 32*a^2*b*c^3*d*f*i*z - 8*a*b^3*c^2*e*f*h*z + 8*a*b
^3*c^2*d*f*i*z - 8*a*b^2*c^3*d*f*g*z + 8*a*b^2*c^3*d*e*h*z - 8*a*b^4*c*e*g*i*z + 40*a^2*b^2*c^2*e*g*i*z + 8*a^
2*b^2*c^2*f*g*h*z - 8*a^2*b^2*c^2*d*h*i*z + 4*a^3*b^2*c*h^2*i*z - 32*a^3*b*c^2*g^2*i*z + 12*a^3*b^2*c*g*i^2*z
+ 8*a^2*b^3*c*g^2*i*z + 16*a^3*b*c^2*g*h^2*z - 4*a^2*b^3*c*g*h^2*z + 32*a^3*b*c^2*e*i^2*z - 24*a^2*b^3*c*e*i^2
*z - 16*a^2*b*c^3*e^2*i*z + 4*a*b^3*c^2*e^2*i*z + 20*a*b^2*c^3*d^2*i*z - 16*a^2*b*c^3*e*g^2*z + 4*a*b^3*c^2*e*
g^2*z - 4*a*b^2*c^3*e^2*g*z + 4*a*b^2*c^3*e*f^2*z - 32*a^3*c^3*f*g*h*z - 32*a^3*c^3*e*g*i*z + 32*a^3*c^3*d*h*i
*z + 32*a^2*c^4*d*f*g*z - 32*a^2*c^4*d*e*h*z + 4*a*b^4*c*e*h^2*z - 16*a*b*c^4*d^2*g*z - 4*a^2*b^2*c^2*f^2*i*z
- 20*a^2*b^2*c^2*e*h^2*z - 4*a^2*b^2*c^2*g^3*z - 16*a^4*c^2*h^2*i*z + 16*a^4*c^2*g*i^2*z + 16*a^3*c^3*f^2*i*z
- 4*a^2*b^4*g*i^2*z - 4*b^4*c^2*d^2*i*z + 16*a^3*c^3*e*h^2*z - 16*a^2*c^4*d^2*i*z + 16*a^2*c^4*e^2*g*z + 4*b^3
*c^3*d^2*g*z - 16*a^2*c^4*e*f^2*z - 4*b^2*c^4*d^2*e*z + 4*a*b^5*e*i^2*z - 16*a^4*b*c*i^3*z + 16*a*c^5*d^2*e*z
+ 4*a^3*b^3*i^3*z + 16*a^3*c^3*g^3*z + 4*a^2*b^2*c*d*g*h*i + 12*a^2*b*c^2*d*f*g*i - 4*a^2*b*c^2*e*f*g*h - 4*a^
2*b*c^2*d*e*h*i + 4*a*b^2*c^2*d*e*f*i - 4*a^3*b*c*f*g*h*i - 4*a*b^3*c*d*f*g*i - 4*a*b*c^3*d*e*f*g + 2*a^2*b^2*
c*f^2*g*i - 4*a^2*b^2*c*e*g^2*i - 2*a^2*b*c^2*e^2*g*i - 8*a*b^2*c^2*d^2*g*i + 2*a^2*b^2*c*e*g*h^2 - 2*a^2*b*c^
2*e*f^2*i - 8*a^2*b^2*c*d*f*i^2 - 2*a^2*b*c^2*d*g^2*h + 2*a*b^2*c^2*e^2*f*h - 4*a*b^2*c^2*d*f^2*h - 2*a^2*b*c^
2*d*f*h^2 + 2*a*b^2*c^2*d*f*g^2 + 8*a^3*c^2*e*f*h*i - 8*a^3*c^2*d*g*h*i + 8*a^2*c^3*d*e*g*h - 8*a^2*c^3*d*e*f*
i - 2*a^3*b*c*e*h^2*i + 6*a^3*b*c*d*h*i^2 - 2*a^3*b*c*e*g*i^2 + 2*a*b^3*c*e^2*g*i + 6*a*b*c^3*d^2*e*i + 2*a*b^
3*c*d*f*h^2 - 2*a*b*c^3*d^2*f*h - 2*a*b*c^3*d*e^2*h + 4*a^2*b^2*c*e^2*i^2 - 5*a^2*b*c^2*d^2*i^2 + 3*a^2*b*c^2*
e^2*h^2 + 4*a*b^2*c^2*d^2*h^2 - 4*a^3*c^2*f^2*g*i + 2*a^3*b^2*f*h*i^2 + 4*a^3*c^2*f*g^2*h + 4*a^3*c^2*e*g^2*i
- 4*a^3*c^2*e*g*h^2 + 4*a^2*c^3*d^2*g*i + 2*a^2*b^3*e*g*i^2 - 2*a^2*b^3*d*h*i^2 + 4*a^3*c^2*d*f*i^2 - 4*a^2*c^
3*e^2*f*h + 2*b^3*c^2*d^2*f*h - 2*b^3*c^2*d^2*e*i + 4*a^2*c^3*e*f^2*g + 4*a^2*c^3*d*f^2*h - 4*a^2*c^3*d*f*g^2
+ 3*a^3*b*c*f^2*i^2 + 2*b^2*c^3*d^2*e*g + 2*a^2*b*c^2*f^3*h - 2*a*b^2*c^2*e^3*i + 5*a*b^3*c*d^2*i^2 - 2*a^2*b^
2*c*d*h^3 + 2*a^2*b*c^2*e*g^3 + 3*a*b*c^3*d^2*g^2 + 4*a^4*c*g*h^2*i - 4*a^4*c*f*h*i^2 + 2*b^4*c*d^2*g*i + 2*a^
3*b*c*g^3*i + 2*a*b^4*d*f*i^2 - 4*a*c^4*d^2*e*g + 2*a^3*b*c*f*h^3 + 4*a*c^4*d*e^2*f + 2*a*b*c^3*e^3*g + 2*a*b*
c^3*d*f^3 - a^2*b^2*c*f^2*h^2 - a^2*b*c^2*f^2*g^2 - a*b^2*c^2*e^2*g^2 + 2*a^4*b*g*i^3 + 4*a^4*c*e*i^3 + 4*a*c^
4*d^3*h + 2*b*c^4*d^3*f - a^3*b*c*g^2*h^2 - a*b^3*c*e^2*h^2 - 6*a^3*c^2*e^2*i^2 - 2*a^3*c^2*f^2*h^2 - a*b*c^3*
e^2*f^2 - 6*a^2*c^3*d^2*h^2 - 2*a^2*c^3*e^2*g^2 - 2*a^4*c*g^2*i^2 + 4*a^2*c^3*e^3*i - 2*b^2*c^3*d^3*h - 2*a^3*
b^2*e*i^3 + 4*a^3*c^2*d*h^3 - 2*a*c^4*d^2*f^2 - a^3*b^2*g^2*i^2 - a^2*b^3*f^2*i^2 - b^3*c^2*d^2*g^2 - b^2*c^3*
d^2*f^2 - a^4*b*h^2*i^2 - b^4*c*d^2*h^2 - a*b^4*e^2*i^2 - b*c^4*d^2*e^2 - b^5*d^2*i^2 - a^3*c^2*g^4 - a^2*c^3*
f^4 - a^4*c*h^4 - a*c^4*e^4 - a^5*i^4 - c^5*d^4, z, l)*x*(8*b^3*c^4 - 32*a*b*c^5))/c^2) - (4*b*c^4*d*e + 8*a*c
^4*d*g - 8*a*c^4*e*f - 4*b^2*c^3*d*g + 4*b^3*c^2*d*i + 8*a^2*c^3*f*i - 8*a^2*c^3*g*h - 4*a*b^2*c^2*f*i + 4*a^2
*b*c^2*h*i - 12*a*b*c^3*d*i + 4*a*b*c^3*e*h + 4*a*b*c^3*f*g)/c^2 + (x*(4*c^5*d^2 + 2*b^5*i^2 - 4*a*c^4*f^2 - 2
*b*c^4*e^2 + 2*b^4*c*h^2 + 2*b^2*c^3*f^2 + 4*a^2*c^3*h^2 + 2*b^3*c^2*g^2 - 8*a*b^2*c^2*h^2 + 6*a^2*b*c^2*i^2 -
 4*b*c^4*d*f - 8*a*c^4*d*h + 8*a*c^4*e*g - 4*b^4*c*g*i - 10*a*b*c^3*g^2 - 10*a*b^3*c*i^2 + 4*b^2*c^3*d*h - 4*b
^3*c^2*f*h - 8*a^2*c^3*g*i + 20*a*b^2*c^2*g*i - 4*a*b*c^3*e*i + 12*a*b*c^3*f*h))/c^2))*root(128*a^2*b^2*c^5*z^
4 - 16*a*b^4*c^4*z^4 - 256*a^3*c^6*z^4 + 128*a^2*b^3*c^3*i*z^3 - 128*a^2*b^2*c^4*g*z^3 - 256*a^3*b*c^4*i*z^3 -
 16*a*b^5*c^2*i*z^3 + 16*a*b^4*c^3*g*z^3 + 256*a^3*c^5*g*z^3 + 160*a^3*b*c^3*g*i*z^2 + 8*a*b^4*c^2*f*h*z^2 + 8
*a*b^4*c^2*e*i*z^2 + 32*a^2*b*c^4*e*g*z^2 + 32*a^2*b*c^4*d*h*z^2 - 8*a*b^3*c^3*e*g*z^2 - 8*a*b^3*c^3*d*h*z^2 +
 16*a*b^2*c^4*d*f*z^2 + 8*a*b^5*c*g*i*z^2 - 72*a^2*b^3*c^2*g*i*z^2 - 48*a^2*b^2*c^3*f*h*z^2 - 48*a^2*b^2*c^3*e
*i*z^2 + 32*a^2*b^4*c*i^2*z^2 - 48*a^3*b*c^3*h^2*z^2 - 4*a*b^4*c^2*g^2*z^2 + 16*a^2*b*c^4*f^2*z^2 - 4*a*b^3*c^
3*f^2*z^2 + 8*a*b^2*c^4*e^2*z^2 + 64*a^3*c^4*f*h*z^2 + 64*a^3*c^4*e*i*z^2 - 64*a^2*c^5*d*f*z^2 - 4*a*b^5*c*h^2
*z^2 + 16*a*b*c^5*d^2*z^2 - 56*a^3*b^2*c^2*i^2*z^2 + 28*a^2*b^3*c^2*h^2*z^2 + 40*a^2*b^2*c^3*g^2*z^2 - 32*a^4*
c^3*i^2*z^2 - 96*a^3*c^4*g^2*z^2 - 32*a^2*c^5*e^2*z^2 - 4*b^3*c^4*d^2*z^2 - 4*a*b^6*i^2*z^2 + 32*a^2*b*c^3*e*f
*h*z - 32*a^2*b*c^3*d*f*i*z - 8*a*b^3*c^2*e*f*h*z + 8*a*b^3*c^2*d*f*i*z - 8*a*b^2*c^3*d*f*g*z + 8*a*b^2*c^3*d*
e*h*z - 8*a*b^4*c*e*g*i*z + 40*a^2*b^2*c^2*e*g*i*z + 8*a^2*b^2*c^2*f*g*h*z - 8*a^2*b^2*c^2*d*h*i*z + 4*a^3*b^2
*c*h^2*i*z - 32*a^3*b*c^2*g^2*i*z + 12*a^3*b^2*c*g*i^2*z + 8*a^2*b^3*c*g^2*i*z + 16*a^3*b*c^2*g*h^2*z - 4*a^2*
b^3*c*g*h^2*z + 32*a^3*b*c^2*e*i^2*z - 24*a^2*b^3*c*e*i^2*z - 16*a^2*b*c^3*e^2*i*z + 4*a*b^3*c^2*e^2*i*z + 20*
a*b^2*c^3*d^2*i*z - 16*a^2*b*c^3*e*g^2*z + 4*a*b^3*c^2*e*g^2*z - 4*a*b^2*c^3*e^2*g*z + 4*a*b^2*c^3*e*f^2*z - 3
2*a^3*c^3*f*g*h*z - 32*a^3*c^3*e*g*i*z + 32*a^3*c^3*d*h*i*z + 32*a^2*c^4*d*f*g*z - 32*a^2*c^4*d*e*h*z + 4*a*b^
4*c*e*h^2*z - 16*a*b*c^4*d^2*g*z - 4*a^2*b^2*c^2*f^2*i*z - 20*a^2*b^2*c^2*e*h^2*z - 4*a^2*b^2*c^2*g^3*z - 16*a
^4*c^2*h^2*i*z + 16*a^4*c^2*g*i^2*z + 16*a^3*c^3*f^2*i*z - 4*a^2*b^4*g*i^2*z - 4*b^4*c^2*d^2*i*z + 16*a^3*c^3*
e*h^2*z - 16*a^2*c^4*d^2*i*z + 16*a^2*c^4*e^2*g*z + 4*b^3*c^3*d^2*g*z - 16*a^2*c^4*e*f^2*z - 4*b^2*c^4*d^2*e*z
 + 4*a*b^5*e*i^2*z - 16*a^4*b*c*i^3*z + 16*a*c^5*d^2*e*z + 4*a^3*b^3*i^3*z + 16*a^3*c^3*g^3*z + 4*a^2*b^2*c*d*
g*h*i + 12*a^2*b*c^2*d*f*g*i - 4*a^2*b*c^2*e*f*g*h - 4*a^2*b*c^2*d*e*h*i + 4*a*b^2*c^2*d*e*f*i - 4*a^3*b*c*f*g
*h*i - 4*a*b^3*c*d*f*g*i - 4*a*b*c^3*d*e*f*g + 2*a^2*b^2*c*f^2*g*i - 4*a^2*b^2*c*e*g^2*i - 2*a^2*b*c^2*e^2*g*i
 - 8*a*b^2*c^2*d^2*g*i + 2*a^2*b^2*c*e*g*h^2 - 2*a^2*b*c^2*e*f^2*i - 8*a^2*b^2*c*d*f*i^2 - 2*a^2*b*c^2*d*g^2*h
 + 2*a*b^2*c^2*e^2*f*h - 4*a*b^2*c^2*d*f^2*h - 2*a^2*b*c^2*d*f*h^2 + 2*a*b^2*c^2*d*f*g^2 + 8*a^3*c^2*e*f*h*i -
 8*a^3*c^2*d*g*h*i + 8*a^2*c^3*d*e*g*h - 8*a^2*c^3*d*e*f*i - 2*a^3*b*c*e*h^2*i + 6*a^3*b*c*d*h*i^2 - 2*a^3*b*c
*e*g*i^2 + 2*a*b^3*c*e^2*g*i + 6*a*b*c^3*d^2*e*i + 2*a*b^3*c*d*f*h^2 - 2*a*b*c^3*d^2*f*h - 2*a*b*c^3*d*e^2*h +
 4*a^2*b^2*c*e^2*i^2 - 5*a^2*b*c^2*d^2*i^2 + 3*a^2*b*c^2*e^2*h^2 + 4*a*b^2*c^2*d^2*h^2 - 4*a^3*c^2*f^2*g*i + 2
*a^3*b^2*f*h*i^2 + 4*a^3*c^2*f*g^2*h + 4*a^3*c^2*e*g^2*i - 4*a^3*c^2*e*g*h^2 + 4*a^2*c^3*d^2*g*i + 2*a^2*b^3*e
*g*i^2 - 2*a^2*b^3*d*h*i^2 + 4*a^3*c^2*d*f*i^2 - 4*a^2*c^3*e^2*f*h + 2*b^3*c^2*d^2*f*h - 2*b^3*c^2*d^2*e*i + 4
*a^2*c^3*e*f^2*g + 4*a^2*c^3*d*f^2*h - 4*a^2*c^3*d*f*g^2 + 3*a^3*b*c*f^2*i^2 + 2*b^2*c^3*d^2*e*g + 2*a^2*b*c^2
*f^3*h - 2*a*b^2*c^2*e^3*i + 5*a*b^3*c*d^2*i^2 - 2*a^2*b^2*c*d*h^3 + 2*a^2*b*c^2*e*g^3 + 3*a*b*c^3*d^2*g^2 + 4
*a^4*c*g*h^2*i - 4*a^4*c*f*h*i^2 + 2*b^4*c*d^2*g*i + 2*a^3*b*c*g^3*i + 2*a*b^4*d*f*i^2 - 4*a*c^4*d^2*e*g + 2*a
^3*b*c*f*h^3 + 4*a*c^4*d*e^2*f + 2*a*b*c^3*e^3*g + 2*a*b*c^3*d*f^3 - a^2*b^2*c*f^2*h^2 - a^2*b*c^2*f^2*g^2 - a
*b^2*c^2*e^2*g^2 + 2*a^4*b*g*i^3 + 4*a^4*c*e*i^3 + 4*a*c^4*d^3*h + 2*b*c^4*d^3*f - a^3*b*c*g^2*h^2 - a*b^3*c*e
^2*h^2 - 6*a^3*c^2*e^2*i^2 - 2*a^3*c^2*f^2*h^2 - a*b*c^3*e^2*f^2 - 6*a^2*c^3*d^2*h^2 - 2*a^2*c^3*e^2*g^2 - 2*a
^4*c*g^2*i^2 + 4*a^2*c^3*e^3*i - 2*b^2*c^3*d^3*h - 2*a^3*b^2*e*i^3 + 4*a^3*c^2*d*h^3 - 2*a*c^4*d^2*f^2 - a^3*b
^2*g^2*i^2 - a^2*b^3*f^2*i^2 - b^3*c^2*d^2*g^2 - b^2*c^3*d^2*f^2 - a^4*b*h^2*i^2 - b^4*c*d^2*h^2 - a*b^4*e^2*i
^2 - b*c^4*d^2*e^2 - b^5*d^2*i^2 - a^3*c^2*g^4 - a^2*c^3*f^4 - a^4*c*h^4 - a*c^4*e^4 - a^5*i^4 - c^5*d^4, z, l
), l, 1, 4) + (h*x)/c + (i*x^2)/(2*c)